જો $0\, \le \,x\, < \frac{\pi }{2},$  તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.

  • [JEE MAIN 2019]
  • A

    $2$

  • B

    $1$

  • C

    $3$

  • D

    $4$

Similar Questions

જો $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

સમીકરણ $\cos \theta + \sqrt 3 \sin \theta  = 2$ નું સમાધાન કરે તેવા $\theta $ નો ઉકેલ મેળવો.

જો ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

જો $1 + \sin x + {\sin ^2}x + .....$ થી $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ તો . . .

સમીકરણ  $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ ના $\left[ {0,\frac{\pi }{3}} \right]$ માં કેટલા ઉકેલો મળે?